Finding roots of polynomials over finite fields
نویسندگان
چکیده
In this letter, we propose an improved algorithm for finding roots of polynomials over finite fields. This makes possible significant speedup of the decoding process of Bose–Chaudhuri–Hocquenghem, Reed–Solomon, and some other error-correcting codes.
منابع مشابه
Random Polynomials over Finite Fields: Statistics and Algorithms
Polynomials appear in many research articles of Philippe Flajolet. Here we concentrate only in papers where polynomials play a crucial role. These involve his studies of the shape of random polynomials over finite fields, the use of these results in the analysis of algorithms for the factorization of polynomials over finite fields, and the relation between the decomposition into irreducibles of...
متن کاملOn the Deterministic Complexity of Factoring Polynomials
The paper focuses on the deterministic complexity of factoring polynomials over finite fields assuming the extended Riemann hypothesis (ERH). By the works of Berlekamp (1967, 1970) and Zassenhaus (1969), the general problem reduces deterministically in polynomial time to finding a proper factor of any squarefree and completely splitting polynomial over a prime field Fp . Algorithms are designed...
متن کاملIterated constructions of irreducible polynomials over finite fields with linearly independent roots
The paper is devoted to constructive theory of synthesis of irreducible polynomials and irreducible N-polynomials (with linearly independent roots) over finite fields. For a suitably chosen initial N-polynomial F1ðxÞAF2s 1⁄2x of degree n; polynomials FkðxÞAF2s 1⁄2x of degrees 2 n are constructed by iteration of the transformation of variable x-x þ dx ; where dAF2s and da0: It is shown that the ...
متن کاملPolynomials over Finite Fields and Applications
Self-reciprocal irreducible monic (srim) polynomials over finite fields have been studied in the past. These polynomials can be studied in the context of quadratic transformation of irreducible polynomials over finite fields. In this talk we present the generalization of some of the results known about srim polynomials to polynomials obtained by quadratic transformation of irreducible polynomia...
متن کاملOn the Efficiency of Algorithms for Polynomial Factoring
Algorithms for factoring polynomials over finite fields are discussed. A construction is shown which reduces the final step of Berlekamp's algorithm to the problem of finding the roots of a polynomial in a finite field Z_. p i It is shown that if the characteristic of the field is of the form p = L ■ 2 +1, where / = L, then the roots of a polynomial of degree n may be found in 2 2 0(n log p + n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IEEE Trans. Communications
دوره 50 شماره
صفحات -
تاریخ انتشار 2002